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Competing reactions with initially separated components in the asymptotic time region
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Two competing irreversible reactions with initially separated components and with essentially different
reaction constants are theoretically studied in the asymptotic time region. The description of the two simulta-
neous reactions is reduced to the consideration of two reactions separated in space. It is shown that the reaction
rate profile can have two maxima and their ratio is independent of time. The location and relative value of the
maxima are functions of the reaction constants and initial concentrations.
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The irreversible reactionA1B→C of two initially sepa-
rated componentsA and B is concentrated in a dynamica
zone known as the reaction front@1,2#. It was shown, both
experimentally@3–7# and theoretically@8–37#, that the zone
can be characterized by a cupola-shaped profile of the r
tion rateR(x,t). To explain the reaction rate profile with tw
maxima observed in the experiments, the theoretical mo
of two irreversible reactionsA11B→C1 and A21B→C2
has been proposed in Refs.@38,39#. Using this model, the
authors simulated the behavior of the reactions in small
medium time regions and well explained the experimen
results.

In this Brief Report we investigate the long-tim
asymptotic behavior of two irreversible reactions using
same mathematical model@38# and recently developed th
quasistatic approach@40#.

The approach is based on the consideration of the qu
static equations describing two irreversible reactionsA11B
→C1 andA21B→C2 are @40#

Dd2a1 /dx22k1a1b50, ~1!

Dd2a2 /dx22k2a2b50, ~2!

Dd2b/dx22k1a1b2k2a2b50, ~3!

with the boundary conditions

Dda1 /dx→J1 , Dda2 /dx→J2 ,

b→0 ~ for x→1`!, ~4!

a1→0, a2→0, Ddb/dx→2J ~ for x→2`!, ~5!

where D is the diffusivity of the components that are a
sumed to be the same;a1 , a2, andb are concentrations o
the componentsA1 , A2, andB, respectively;k1 and k2 are
the constants of the first and second reactions, respecti
Here we assume that the fluxes of the componentsA1 , A2
are directed from the right to the left andJ1 , J2 are their
fluxes atx→1`; the flux of componentB is in the opposite
direction and has the value2J at x→2`.
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Equations~1!–~3! and boundary conditions~4! and ~5!
can be rewritten in the following dimensionless form:

d2a1 /dj22a1b50, ~6!

«d2a2 /dj22a2b50, ~7!

d2b/dj22a1b2a2b/«50, ~8!

da1 /dj→ j 1 , da2 /dj→ j 2 , b→0~ for j→1`!,
~9!

a1→0, a2→0, db/dj→21 ~ for j→2`!,
~10!

where a15(Jw1 /D)a1 , a25(Jw1 /D)a2 , b5(Jw1 /D)b,
x5w1j, w15(D2/k1J)1/3 is the characteristic width of the
zone of the first reaction,j 15J1 /J, j 25J2 /J, and «
5k1 /k2.

From systems~6!–~8!, the following equation can be ob
tained:

d2a1 /dj21d2a2 /dj22d2b/dj250. ~11!

Taking into account boundary conditions~9! and ~10! and
assuming thatb5a11a2 at j50, the solution of Eq.~11!
can be presented in the form

b5a11a22j, ~12!

and

j 11 j 251. ~13!

The system containing three differential equations of sec
order @Eqs. ~6!–~8!# is reduced to the equation system~6!,
~7!, and ~12!, where the linear relation~12! replaces one of
the differential equations.

Let us assume that«!1 and consider the solution of Eqs
~6!, ~7!, and ~12! in a first approximation («50). Equation
~7! is reduced toa2b50. Taking into account the boundar
conditions, we obtain two regions that are assumed to
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separated by some pointj* : at j.j* b50 and atj,j*
a250. The solution forj.j* is obtained in the analytica
form:

a15j* 1 j 1~j2j* !, a25 j 2~j2j* !, b50. ~14!

At j,j* the distribution of the componentsA1 and B are
determined from the system containing Eq.~6! and

d2b/dj22a1b50, ~15!

with boundary conditions~10! at j→2`. At j5j* the
boundary conditions are obtained from the continuity ofa1 ,
b, andda1 /dj at this point:

da1 /dj→ j 1 , b→0, a1→j* . ~16!

The presence of five boundary conditions allows one to fi
the boundary coordinatej* . The obtained boundary cond
tions ~16! differ from the conditions usually used for th
analysis of a single irreversible reaction of the typeA1B
→C @13,16#.

Figure 1 shows the numerical solution of Eqs.~6! and
~15!. The dependence of the coordinatej* on the flux j 2 of
the componentA2 is given in Fig. 2. In the framework of the
approximation«!1, the componentsA2 and B react in a
very narrow region near the pointj* ~Fig. 1!. The influence
of the second reaction ofA2 andB components on the firs
reaction is come to change of the boundary conditions
Eqs.~6! and~15! in the comparison with the case of a sing
reaction. The first reactionA11B→C1 is occuring in the
range ofj,j* only, where the second reaction is absent

To study the reactions in a narrow zone nearj5j* , we
introduce the following variables:z5(j2j* )( j 2 /«)1/3; a1

5j* 1( j 2
2«)1/3m1 ; a25( j 2

2«)1/3m2 ; b5( j 2
2«)1/3h and Eqs.

~6!–~8! are rewritten as

d2m1 /dz22j* ~«/ j 2!2/3h2«m1h50, ~17!

d2m2 /dz22m2h50, ~18!

d2h/dz22j* ~«/ j 2!2/3h2«m1h2m2h50. ~19!

FIG. 1. Profiles of the components given by solution~14! and
numerical solution of Eqs.~6! and ~15!. The zone of the second
reaction is marked by a cross-hatch gray region.
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Systems~17!–~19! contain two dimensionless parameters«
andx5j* («/ j 2)2/3. When«!1 andx!1, from Eqs.~17!–
~19! we obtaind2m1 /dz250, i.e., the first reactionA11B
→C1 can be neglected about the pointj* : m15( j 1 / j 2)z.
The distribution of the componentsA2 andB is given by the
solution of the equation system containing Eq.~18! and

d2h/dz22m2h50, ~20!

obtained from Eq.~19!. The boundary conditions can be ob
tained as the limit of the large scale solution near a pointj* :

dm2 /dz→1, h→0 ~ for z→1`!, ~21!

m2→0, dh/dz→21 ~ for z→2`!. ~22!

Thus, regarding the considered problem, the second reac
of componentsA2 andB occurs in a narrow zone located t
the right of the first reaction zone. The first reaction of co
ponentsA1 andB can be neglected in the zone of the seco
one. For the analysis of the second reaction, we can use
well-known dependences obtained for a single reaction in
approximation of an infinite region@13,16#. The separate
consideration of the second reaction is possible when b
parameters« anf x are very small simultaneously. As distinc
from the parameter «, the second parameterx
5j* (k1J1 /k2J2)2/3 is determined not only by the ratio of th
reaction constantsk1 and k2 but also by the ratio of the
fluxes,J1 andJ, as well as by the coordinatej* .

If j 2!1, the problem ofA11B→C1 reaction is also re-
duced to a single reaction in an infinite region. The para
eter j* can be determined from the ‘‘infinite’’ solution fo
A11B→C1 reaction at a point wheredb/dj52 j 2. The ra-
tio of the maxima of the reaction rates is

R2max/R1max'~J2w1 /Jw2!5 j 2
4/3/«1/3, ~23!

since the maximum rate of a single reaction is proportio
to a component flux and inversely proportional to a char
teristic width of the reaction zone@13,16#: R1max;J/w1 ,
R2max;J2 /w2, and w25(D2/k2J2)1/3 is the characteristic
width of the zone of the second reactionA21B→C2. It has

FIG. 2. Dependence of the dimensionless coordinatej* on
j 2.
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been shown that in long-time asymptotic region the com
nent fluxes have the same temporal dependence@1,40# and
ratio ~23! is independent of time.

Figure 3 presents the results of a numerical solution of
system of the reaction-diffusion equations at long times. T

FIG. 3. Reaction rate profiles ofr 1 and r 2 given by numerical
solution of the dimensionless reaction-diffusion equations for re
tion constantsk151024, k251, and initial concentration compo
nents: ~a! a10/b050.97, a20/b050.03; and ~b! a10/b050.75,
a20/b050.25. Dashed lines correspond tot523105 and solid
curves tot523106. @In the long-time asymptotic the compone
fluxes used in boundary conditions~4! and ~5! are proportional to
the initial component concentrations@40#.#
ss

H.
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insets at the left show the temporal dependence of the r
of the maxima of the reaction rates and illustrate approach
of this ratio to its asymptotic. The dash-dotted lines on th
insets mark the asymptotic values obtained from Eq.~23!.
The reaction-diffusion equations were solved using dim
sionless variables: u5xAk2b0 /D, t5tb0k2 , r 1

5R1 /(k2b0
2), and r 25R1 /(k2b0

2), and the concentration
were normalized byb0. The discrete schematics and alg
rithm of the calculation are described in Refs.@2,34,35,40#. It
is known@40# that the reaction rate is proportional to;t22/3

and the reaction width is;t1/6 in the long-time asymptotic.
Therefore in the coordinates chosen for Fig. 3 the reac
rates and widths should be independent of time. The p
sented cases show two possible relations between max
in the first case the second maximum is lower than the fi
one, in the second case the relation between the values o
maxima is inverse. In the case presented in Fig. 3~a! the
reaction parameters were chosen the same as in R
@38,39#. The case presented in Fig. 3~b! differs only by the
relation of the initial concentrations. In both cases the res
of the numerical calculations and expression~23! give close
asymptotic values.

We analyzed the cases ofk2@k1 and obtained two reac
tion maxima. In another limit, ifk25k1, the problem is re-
duced to the analysis of a single reaction and the reac
rate profile has one maximum at any concentrations of
initial components. One may suppose that there is a crit
value ofk2 /k1 separating the regions of existence of sing
and two maxima. However, it is possible that there is
critical value but there is just a slow crossover between
two reaction-zone regimes. Note that a single maximum
be also observed if the distance between the reaction max
is small ~Fig. 2! and the maxima are not resolvable.

The obtained results can be expanded for the analysi
the reaction processes when the components have va
diffusivities. The problem is reduced to Eqs.~1!–~3! using
new variables equal to the products of the component c
centrations and the diffusivities@13#.

In summary, our analysis of two competing irreversib
reactions showed that in the asymptotic time region the
action rate profile could have two maxima and their ratio
independent of time, and what is more important, the sec
maximum can be higher than the first one. The location a
relative value of the second maximum are the functions
the reaction constantsk1 , k2 and initial concentrations.
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