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Competing reactions with initially separated components in the asymptotic time region
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Two competing irreversible reactions with initially separated components and with essentially different
reaction constants are theoretically studied in the asymptotic time region. The description of the two simulta-
neous reactions is reduced to the consideration of two reactions separated in space. It is shown that the reaction
rate profile can have two maxima and their ratio is independent of time. The location and relative value of the
maxima are functions of the reaction constants and initial concentrations.
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The irreversible reactioA+B— C of two initially sepa- Equations(1)—(3) and boundary condition$4) and (5)
rated component& and B is concentrated in a dynamical can be rewritten in the following dimensionless form:
zone known as the reaction froft,2]. It was shown, both

experimentallyf 3—7] and theoreticallf8-37|, that the zone d2a,/dE?— a,8=0, (6)
can be characterized by a cupola-shaped profile of the reac-
tion rateR(x,t). To explain the reaction rate profile with two ed?a,/dE?— a,B=0, (7
maxima observed in the experiments, the theoretical model
of two irreversible reaction®\;+B—C,; and A,+B—C, d?BldE?— a B— anBle=0, (8)

has been proposed in Ref88,39. Using this model, the
authors simulated the behavior of the reactions in small and day/dé—j,, dayldé—j,, B—0(for é—+o)

medium time regions and well explained the experimental 9)
results.

In this Brief Report we investigate the long-time @10, a,—0, dpldé——1 (for &¢——),
asymptotic behavior of two irreversible reactions using the (10)
same mathematical modgB8] and recently developed the
quasistatic approadi0]. where a;=(Jw; /D)y, a,=(Jw,/D)a,, b=(Iw;/D)A,

The approach is based on the consideration of the quasj=, ¢, w,=(D%k,J)? is the characteristic width of the
static equations describing two irreversible reactiéas-B  zone of the first reactionj,=J;/J, j,=J,/J, and e

—C, andA,+B—C, are[40] =k, /K.
Dd%a, /x>~ kyagh=0, 0 tairl:égrn system$6)—(8), the following equation can be ob-
Dd?a,/dx?—k,a,b=0, 2 d2aq /dE?+ d?a, /dE2—d2?BIdE?=0. (11)
Dd?b/dx?—k,a,;b—k,a,b=0, (3)  Taking into account boundary conditiori8) and (10) and
assuming thaB= a;+ a, at £&=0, the solution of Eq(11)
with the boundary conditions can be presented in the form
Dda;/dx—J;, Dda,/dx—J,, B=ai+a,— &, (12
b—0 (for x— +), (4 and
a;—0, a,—0, Ddb/dx——J (for x——x), (5) jiti=1. (13

where D is the diffusivity of the components that are as- The system containing three differential equations of second
sumed to be the samay, a,, andb are concentrations of order[Egs.(6)—(8)] is reduced to the equation syste#),

the component#\;, A,, andB, respectivelyk, andk, are  (7), and(12), where the linear relatiofl2) replaces one of
the constants of the first and second reactions, respectivelthe differential equations.

Here we assume that the fluxes of the componéntsA, Let us assume that<1 and consider the solution of Egs.
are directed from the right to the left and, J, are their (6), (7), and(12) in a first approximation £ =0). Equation
fluxes atx— +9; the flux of componenB is in the opposite  (7) is reduced tax,8=0. Taking into account the boundary
direction and has the valueJ at x— —o°. conditions, we obtain two regions that are assumed to be
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FIG. 1. Profiles of the components given by solutidd) and

numerical solution of Eqs(6) and (15). The zone of the second

reaction is marked by a cross-hatch gray region.

separated by some poigt: at é>¢&* =0 and até<é&*
a,=0. The solution foré>£* is obtained in the analytical
form:

a=E +]1(E— &), ar=](E—¢&"),

At £€<¢&* the distribution of the components; andB are
determined from the system containing E6). and

B=0. (14

d’Bldé?— a1 B=0, (15
with boundary conditiong10) at é&— —o. At £=§&* the
boundary conditions are obtained from the continuity@f
B, andda,/d¢ at this point:

dal/df—ﬂ.l, B—>0, (16)

a1—>§* .

PHYSICAL REVIEW B8, 022101 (2003

0 T T T T T T T
00 01 02 03 04 05 06 07

J2
FIG. 2. Dependence of the dimensionless coordirgteon
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Systems(17)—(19) contain two dimensionless parameters
andy=¢*(e/j,)?®. Whene<1 andy<1, from Egs.(17)—
(19 we obtaind?u,/d{?>=0, i.e., the first reactiom,+ B
—C, can be neglected about the poifit: w;=(j1/j,)<.
The distribution of the componen#s, andB is given by the
solution of the equation system containing E4g8) and

d?n/d%— puam=0,

obtained from Eq(19). The boundary conditions can be ob-
tained as the limit of the large scale solution near a péint

(20

du,/d{—1, p—0 (for {— +x), (21

uo—0, dy/ld{——-1 (for {——x). (22

Thus, regarding the considered problem, the second reaction

The presence of five boundary conditions allows one to findyf components\, andB occurs in a nharrow zone located to
the boundary coordinaté*. The obtained boundary condi- the right of the first reaction zone. The first reaction of com-
tions (16) differ from the conditions usually used for the ponentsA; andB can be neglected in the zone of the second

analysis of a single irreversible reaction of the type B
—C [13,16.

Figure 1 shows the numerical solution of Eq6) and
(15). The dependence of the coordindte on the fluxj, of

the componend, is given in Fig. 2. In the framework of the

approximatione <1, the componenté, and B react in a
very narrow region near the poigt (Fig. 1). The influence

of the second reaction &, and B components on the first

one. For the analysis of the second reaction, we can use the
well-known dependences obtained for a single reaction in the
approximation of an infinite regiofi13,16. The separate
consideration of the second reaction is possible when both
parameterg anf y are very small simultaneously. As distinct
from the parameter e, the second parametery

= £* (kyJ1/kJ5)?is determined not only by the ratio of the
reaction constant&; and k, but also by the ratio of the

reaction is come to change of the boundary conditions fofluxes,J; andJ, as well as by the coordinatg .

Egs.(6) and(15) in the comparison with the case of a single

reaction. The first reactiod;+B—C, is occuring in the
range ofé<&* only, where the second reaction is absent.

To study the reactions in a narrow zone néaré* |, we
introduce the following variables:=(£—£*)(j,/e)% a;
=& +(j5e)Pu1; ap=(i3e)"u2; B=(i%e)"*n and Egs.
(6)—(8) are rewritten as

d?uq /AL = E* (el )2 n—ep1 =0, 17
d?up /A2 = uan=0, (18)
d>n/d{%—&* (elj)**n—emin—pom=0. (19

If j,<<1, the problem ofA;+B—C, reaction is also re-
duced to a single reaction in an infinite region. The param-
eter & can be determined from the “infinite” solution for
A;+B—C; reaction at a point wherég/dé= —j,. The ra-
tio of the maxima of the reaction rates is

I:z2ma1x/ leax% (J2W1 /JW2) = J g/3/81/3,

(23
since the maximum rate of a single reaction is proportional
to a component flux and inversely proportional to a charac-
teristic width of the reaction zonfl3,16: Rymax—J/W1,
Romax~J2/W,, and w,=(D?/k,J,)*? is the characteristic
width of the zone of the second reactida+B—C,. It has
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insets at the left show the temporal dependence of the ratio
of the maxima of the reaction rates and illustrate approaching
of this ratio to its asymptotic. The dash-dotted lines on these
insets mark the asymptotic values obtained from &8).
The reaction-diffusion equations were solved using dimen-
sionless  variables: 6#=x\k,by/D, 7=tbgk,, 1
=R, /(k,b3), and r,=R;/(k,b3), and the concentrations
were normalized by,. The discrete schematics and algo-
rithm of the calculation are described in R€3,34,35,40. It
is known[40] that the reaction rate is proportional tor~ %3
and the reaction width is- 76 in the long-time asymptotic.
Therefore in the coordinates chosen for Fig. 3 the reaction
A\ rates and widths should be independent of time. The pre-
- - - - - - sented cases show two possible relations between maxima:
-90 60 -30 0 30 60 ; : . . .
@) 0/ 71/6 in the first case the second maximum is lower than the first
one, in the second case the relation between the values of the
0.0 , maxima is inverse. In the case presented in Fi@) ﬁwe
: , /r 2 reaction parameters were ghogen thg same as in Refs.
Imax’ " 2max : [38,39. The case presented in Figb} differs only by the
13 relation of the initial concentrations. In both cases the results
of the numerical calculations and expressi@g) give close
asymptotic values.

We analyzed the cases kf§>k; and obtained two reac-
tion maxima. In another limit, ik,=k,, the problem is re-
duced to the analysis of a single reaction and the reaction
rate profile has one maximum at any concentrations of the
initial components. One may suppose that there is a critical
value ofk,/k; separating the regions of existence of single
and two maxima. However, it is possible that there is no
critical value but there is just a slow crossover between the
90 60 30 0 30 two reaction-zone regimes. Note that a single maximum can

(b) 0/ 1/6 be also observed if the distance between the reaction maxima
is small(Fig. 2 and the maxima are not resolvable.

FIG. 3. Reaction rate profiles of andr, given by numerical The obtained results can be expanded for the analysis of
solution of the dimensionless reaction-diffusion equations for reacthe reaction processes when the components have various
tion constantsk, =104, k,=1, and initial concentration compo- diffusivities. The problem is reduced to Eq4)—(3) using
nents: (8) a;o/bpy=0.97, a,y/by=0.03; and(b) a;o/b,=0.75, new variables equal to the products of the component con-
ayy/by=0.25. Dashed lines correspond te=2x10° and solid  centrations and the diffusivitigd 3].
curves tor=2X 1. [In the long-time asymptotic the component  In summary, our analysis of two competing irreversible
fluxes used in boundary conditiori4) and (5) are proportional to  reactions showed that in the asymptotic time region the re-
the initial component concentratiof40]. ] action rate profile could have two maxima and their ratio is

) ] ) ] independent of time, and what is more important, the second
been shown that in long-time asymptotic region the compomaximum can be higher than the first one. The location and
nent fluxes have the same temporal dependébe®] and  rgjative value of the second maximum are the functions of
ratio (23) is independent of time. _ _ the reaction constants,, k, and initial concentrations.

Figure 3 presents the results of a numerical solution of the
system of the reaction-diffusion equations at long times. The We are grateful to H. Taitelbaum for useful discussions.
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